Certain Classes of Operators on Some Weighted Hyperbolic Function Spaces
نویسندگان
چکیده
In this paper, some classes of concerned multiplication operators consisting analytic and hyperbolic functions are defined considered. Furthermore, properties such as boundedness compactness the new discussed. Finally, a general class weighted Bloch is characterized by metric spaces.
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولThe Commutants of Certain Toeplitz Operators on Weighted Bergman Spaces
For α > −1, let A2α be the corresponding weighted Bergman space of the unit ball in C. For a bounded measurable function f , let Tf be the Toeplitz operator with symbol f on A 2 α. This paper describes all the functions f for which Tf commutes with a given Tg, where g(z) = z1 1 · · · z Ln n for strictly positive integers L1, . . . , Ln, or g(z) = |z1| s1 · · · |zn| nh(|z|) for non-negative real...
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: ['2314-4785', '2314-4629']
DOI: https://doi.org/10.1155/2021/6664398